
Use UUID in Pipeline

Xuyang Yuan

2024-02-06

Table of contents

1 Why uuid? 2

2 How to create uuid? 3

3 UUID in dot sample file 3

4 UUID in sample folder 4

5 UUID in analyses-work folder 4

6 UUID in dot analysis file 4

7 UUID for reanalyses 5
7.1 No, we don’t need to . 5
7.2 Yes, we need to . 6

7.2.1 Option 1: Store the UUID as input sample UDF in Clarity LIMS. . . . 6
Pros . 6
Cons . 6

7.2.2 Option 2: lims-exporter creates UUID for samples and store the UUID
as attribute of the “Demultiplexing” process output file attributes in
Clarity LIMS. 7
Pros . 7

1

Cons . 7
7.2.3 Option 3: Maintain a SQLite database with sample name and UUID. . 7

Pros . 7
Cons . 7

7.2.4 Option 4: Let lims-exporter query Neo4j database to get the UUID of
the old sample. 8
Pros . 8
Cons . 8

1 Why uuid?

The UUID is needed for both the filesystem and Maestro/Steps. example

1. Filesystem

1. Unique folder name for each sequencing run of a sample or even for each demulti-
plexing of a sequencing run of a sample, e.g.
Diag-wgs123-HG12345678-PM-d303c3b8-6643-4b1e-93fa-4aab17280803

2. Unique folder name for each analysis (basepipe, triopipe or annopipe). Multiple
run of the same analysis are possible.

2. Maestro/Steps

i) UUID for samples:
a. *.fastq.gz files inherit the UUID of their sample, with a “_R1” or “_R2” suffix.

This serves as the identifier for the output of DotSampleFileWatcher and the
inputs of the BasepipeRunner process.

b. *.g.vcf files inherit the UUID of their sample, with a “_gvcf” suffix. This serves
as the identifier for the output of the basepipe process and the inputs of the
triopipe process.

c. *.final.vcf files inherit the UUID of their sample, with a “_vcf” suffix. This
serves as the identifier for the output of the basepipe process and the inputs of
the annopipe process.

d. *.final.vcf files inherit the UUID of proband sample, with a “_vcf” suffix. This
serves as the identifier for the output of the triopipe process and the inputs of
the annopipe process.

ii) UUID for basepipe, triopipe, and annopipe.
a. The samples list in .analysis file contains the sample names with UUIDs. e.g.

{

"samples": [

"Diag-wgs1-HG12345678-PM-d303c3b8-6643-4b1e-93fa-4aab17280803",

2

uuid.png

"Diag-wgs1-HG12345679-FM-8d72b72c-6bc6-48ab-824d-c9a5588b8247",

"Diag-wgs1-HG12345680-MK-d987c050-8a6a-4e5a-a577-1e277a07b3ad"

]

}

b. The pedigree object in a triopipe .analysis file contains samples with UUIDs.
e.g.

{"pedigree": {

"proband": {

"sample": "Diag-wgs1-HG12345678-PM-d303c3b8-6643-4b1e-93fa-4aab17280803"

},

"father": {

"sample": "Diag-wgs1-HG12345679-FM-8d72b72c-6bc6-48ab-824d-c9a5588b8247"

},

"mother": {

"sample": "Diag-wgs1-HG12345680-MK-d987c050-8a6a-4e5a-a577-1e277a07b3ad"

}

}}

2 How to create uuid?

We are considering that it’s lims-exporter’s responsibility to create uuid for both samples
and analyses.

We can use the uuid library in python, e.g.

import uuid

smp_uuid = uuid.uuid4()

print(smp_uuid)

6828b83d-0bd7-4920-8a34-392b158eba17

3 UUID in dot sample file

A .sample json file will have a field called uuid with a uuid4 value, e.g.

3

{

"uuid": "d303c3b8-6643-4b1e-93fa-4aab17280803"

}

4 UUID in sample folder

A sample folder structure looks like:

Diag-wgs1-HG12345677-0d623118-4741-4b18-99e4-9c36477b7d7c

├── Diag-wgs1-HG12345677.sample

├── Diag-wgs1-HG12345677.taqman

├── HG12345677-Nett-KIT-wgs_S11_R1_001_fastq.gz

└── HG12345677-Nett-KIT-wgs_S11_R2_001_fastq.gz

• sample folder name has uuid
• .sample file has no uuid
• .taqman file have no uuid
• .fastq.gz files have no uuid

When checking if a sample folder has already been created, lims-exporter ignores the
UUID part of the sample folder name.

5 UUID in analyses-work folder

6 UUID in dot analysis file

A .analysis will have multiple fields with uuid4 values, e.g.

{

"name": "Diag-wgs1-HG12345678-PM-DR-TRIO-74b039f4-5d0d-4651-9311-407de17d5ca1",

"params": {

"pedigree": {

"proband": {

"sample": "Diag-wgs1-HG12345678-PM-d303c3b8-6643-4b1e-93fa-4aab17280803"

},

"father": {

"sample": "Diag-wgs1-HG12345679-FM-8d72b72c-6bc6-48ab-824d-c9a5588b8247"

4

},

"mother": {

"sample": "Diag-wgs1-HG12345680-MK-d987c050-8a6a-4e5a-a577-1e277a07b3ad"

}

},

},

"samples": [

"Diag-wgs1-HG12345678-PM-d303c3b8-6643-4b1e-93fa-4aab17280803",

"Diag-wgs1-HG12345679-FM-8d72b72c-6bc6-48ab-824d-c9a5588b8247",

"Diag-wgs1-HG12345680-MK-d987c050-8a6a-4e5a-a577-1e277a07b3ad"

]

}

7 UUID for reanalyses

When UUIDs are used in .sample and .analysis files, we need to consider the reanalysis scenario.
This is because for reanalyses, instead of creating new UUIDs, the UUIDs of the old samples
must be used.

Do we need to make the UUIDs of old samples accessible by lims-exporter?

7.1 No, we don’t need to

⊠ For new analysis, lims-exporter just need to create UUID for new samples and analyses
and use them in the .sample and .analysis files and in the samples and analyses-work
folder names. The UUID will end up in Neo4j database.

□ For reanalysis, we only need the old sample name and project, Neo4j database will
be queried to to find the correct UUID of the sample, e.g. query by sample_name and
project_name together with other attributes such as sequencing_run_date, sequencer_type etc.

□ Who will query Neo4j database, DotAnalysisFileWatcher? (there is no .sample and
fastq.gz files for a reanalyzed sample, DotSampleFileWatcher or FastqFileWatcher
will not be triggered.)

□ How to query Neo4j db in Steps?
□ Violation of the principle of “Steps needs to know nothing of the Neo4j database”?

5

7.2 Yes, we need to

□ For reanalysis, we need the path to the sample folder of the old sample on filesystem.

⊠ If the UUID is not stored, for incomplete trios1, the sample folder will be created again
and again, each time with a new UUID.

– but this can be avoided; lims-exporter always checks if a sample folder has already
been created, letting lims-exporter ignore the UUID part when checking if a sample
folder has already been created solves the problem.

⊠ For the “failed fingerprinting” + “then new SNP-ID file” scenario, we will create a new
UUID for the sample which is exactly the same sample.

– some duplicates in Neo4j database is not a big deal?

If we want to store the UUID of historical samples, we have several options each with pros
and cons.

7.2.1 Option 1: Store the UUID as input sample UDF2 in Clarity LIMS.

The lims-exporter checks if the sample has a UUID UDF. If not, it will create one and store it
as the sample’s UUID UDF in the Clarity LIMS database; if yes, that UUID will be used.

Pros

Pros

1. Can directly query the Clarity database to get old sample name, project and
UUID, simple and fast.

Cons

Cons

1. Re-prep, re-sequencing or re-demultiplexing will not be distinguishable because
the same UUID (from input sample UDF) will be used.

1Incomplete trios are trios with missing family members in the lims-exporter step, e.g. only proband and
mother, or only proband and father, or only proband.

2User Defined Field in Clarity LIMS.

6

7.2.2 Option 2: lims-exporter creates UUID for samples and store the UUID as attribute
of the “Demultiplexing” process output file attributes in Clarity LIMS.

Pros

Pros

1. Each re-prep and/or re-sequencing and/or re-demultiplexing will get a new UUID.

Cons

Cons

1. The UUID is stored as the Demultiplexing process’s output artifact’s UDF, making
it hard to retrieve that UUID.

⋄ to query the Clarity database, complex query needed, if even possible.
⋄ to use the Clarity API, super slow.

7.2.3 Option 3: Maintain a SQLite database with sample name and UUID.

Pros

Pros

1. Querying is fast.

2. SQLite database can be re-created from Neo4j database if needed.

Cons

Cons

1. Adding one more dependency to lims-exporter.

7

7.2.4 Option 4: Let lims-exporter query Neo4j database to get the UUID of the old
sample.

The lims-exporter will query the Claity LIMS database to get the old sample name and old
project name, and then query the Neo4j database to get the UUID of the old sample.

The lims-exporter will need other metadata to compose the Neo4j query, e.g. sequenc-
ing_run_date, sequencer_type, etc.

Pros

Pros

1. Only one source of truth.

2. No need to ”write to” Clarity LIMS database by lims-exporter.

Cons

Cons

1. Added a dependency to lims-exporter
i Neo4j database itself must be accessible by lims-exporter on NSC.
ii noe4j Python package used by lims-exporter to connect to Neo4j database

and to make queries.

2. Circular dependency? (Neo4j database depends on lims-exporter as data source
and lims-exporter depends on Neo4j database for UUID.)

3. Requires the Neo4j database to be up-to-date.

8

	Why uuid?
	How to create uuid?
	UUID in dot sample file
	UUID in sample folder
	UUID in analyses-work folder
	UUID in dot analysis file
	UUID for reanalyses
	No, we don't need to
	Yes, we need to
	Option 1: Store the UUID as input sample UDF in Clarity LIMS.
	Pros
	Cons

	Option 2: lims-exporter creates UUID for samples and store the UUID as attribute of the ``Demultiplexing'' process output file attributes in Clarity LIMS.
	Pros
	Cons

	Option 3: Maintain a SQLite database with sample name and UUID.
	Pros
	Cons

	Option 4: Let lims-exporter query Neo4j database to get the UUID of the old sample.
	Pros
	Cons

